www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Mathe Klassen 8-10" - Terme | Regeln/Lösen
Terme | Regeln/Lösen < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Terme | Regeln/Lösen: Wie könnte man weiter machen?
Status: (Frage) beantwortet Status 
Datum: 12:45 Do 14.09.2006
Autor: KnockDown

Aufgabe
[mm] \bruch{(a-b)^2 - c^2}{a-b-c} [/mm]

Vereinfache so weit wie möglich.



Buchlösung:
-----------

a-b+c

Hi,

ich habe mal wieder einige Aufgaben gerechnet und da bin ich wieder auf zwei gestoßen bei denen ich weider nicht weiterkomme :-/ Ich werde jetzt erstmal die eine Aufgabe euch zeigen, da ich die zweite noch etwas versuchen möchte.

1. [mm] \bruch{(a-b)^2 - c^2}{a-b-c} [/mm]

2. [mm] \bruch{a^2 - 2ab+b^2 - c^2}{a-b-c} [/mm]

Ab hier hänge ich schon leider :-( Vielleicht könnt ihr mir ein Tip geben was ich machen könnte?


Danke für eure Hilfe!

        
Bezug
Terme | Regeln/Lösen: Antwort
Status: (Antwort) fertig Status 
Datum: 12:54 Do 14.09.2006
Autor: M.Rex


> [mm]\bruch{(a-b)^2 - c^2}{a-b-c}[/mm]
>  
> Vereinfache so weit wie möglich.
>  
>
>
> Buchlösung:
>  -----------
>  
> a-b+c
>  Hi,
>  
> ich habe mal wieder einige Aufgaben gerechnet und da bin
> ich wieder auf zwei gestoßen bei denen ich weider nicht
> weiterkomme :-/ Ich werde jetzt erstmal die eine Aufgabe
> euch zeigen, da ich die zweite noch etwas versuchen
> möchte.
>  
> 1. [mm]\bruch{(a-b)^2 - c^2}{a-b-c}[/mm]
>  
> 2. [mm]\bruch{a^2 - 2ab+b^2 - c^2}{a-b-c}[/mm]
>  
> Ab hier hänge ich schon leider :-( Vielleicht könnt ihr mir
> ein Tip geben was ich machen könnte?
>  
>
> Danke für eure Hilfe!


Hallo und [willkommenmr]

[mm] \bruch{(a-b)^2 - c^2}{a-b-c} [/mm]

Wende im Zähler doch mal die Dritte Binomische Formel an.
Dann steht dort.

[mm] \bruch{((a-b)+c)((a-b)-c}{a-b-c} [/mm]

Nun noch einmal kürzen, é Voilá.

Marius

Bezug
                
Bezug
Terme | Regeln/Lösen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:54 Do 14.09.2006
Autor: KnockDown

Hi,

danke fürs Willkommen und für die schnelle gute Antwort :)

Da bin ich garnicht drauf gekommen dass ich da mal die 3te versuchen könnte :-/ Naja jetzt hab ich wieder mal was dazu gelernt!

Ich wünsch dir noch nen schönen Tag :)

Bezug
                
Bezug
Terme | Regeln/Lösen: Binomische Formel
Status: (Frage) beantwortet Status 
Datum: 18:13 Do 14.09.2006
Autor: KnockDown

Ich habe das ganze jetzt nochmal durchgerechnet und dazu ist mir folgende Frage gekommen:

01. [mm] \bruch{(a-b)^2 - c^2}{a-b-c} [/mm]

02. [mm] \bruch{a^2-b^2-c^2}{a-b-c} [/mm]
Stimmt dieser Zwischenschritt so? Kann man einfach das aus [mm] (a-b)^2 [/mm] --> [mm] a^2 [/mm] + [mm] b^2 [/mm] machen?

03. [mm] \bruch{((a-b)+c)((a-b)-c}{a-b-c} [/mm]

04. a-b-c

Bezug
                        
Bezug
Terme | Regeln/Lösen: Antwort
Status: (Antwort) fertig Status 
Datum: 18:16 Do 14.09.2006
Autor: Teufel

Nein, (a-b)²=a²-2ab+b²!

Bezug
        
Bezug
Terme | Regeln/Lösen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:22 Do 14.09.2006
Autor: JannisCel

Beim Schritt von 03 auf 04 hat sich ein kleiner Tipfehler eingeschlichen.

[mm] ((a-b)-c)((a-b)+c)/(a-b-c)=(a-b)^{2}+c^{2}/a-b-c [/mm]

Wenn Du den Term ((a-b)-c) im Zähler mit dem Nenner kürzt (wg. dem Assoziativgesetz haut das hin) kommst du zu Deiner Buchlösung, ganz so wie Rex es geschrieben hat.

Bezug
        
Bezug
Terme | Regeln/Lösen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:41 Do 14.09.2006
Autor: KnockDown

[mm] \bruch{(a-b)^{2}+c^{2}}{a-b-c} [/mm]


Ich hab jetzt noch ne Frage zu dem Lösen mit der 3ten Binomischen Formel.

Soweit ich weiß, kann amn doch nicht einfach [mm] (a-b)^2 [/mm] zu [mm] a^2-b^2 [/mm] umformen. Die dritte binomische Formel lautet doch aber:

[mm] a^2-b^2 [/mm] = (a-b)*(a+b)



Die Aufgabe lautete doch aber:

[mm] \bruch{(a-b)^{2}+c^{2}}{a-b-c} [/mm]

Dann wurde gesagt dass man daraus folgendes macht:

[mm] \bruch{(a-b)^{2}+c^{2}}{a-b-c}=\bruch{((a-b)-c)((a-b)+c)}{(a-b-c)} [/mm]


Deshalb meine Frage wie kann man dann einfach diesen Schritt machen? Gibts hierfür noch einen Zwischenschritt?


Danke für eure Hilfe :)

Bezug
                
Bezug
Terme | Regeln/Lösen: Antwort
Status: (Antwort) fertig Status 
Datum: 23:58 Do 14.09.2006
Autor: Bastiane

Hallo!

> [mm]\bruch{(a-b)^{2}+c^{2}}{a-b-c}[/mm]
>  
>
> Ich hab jetzt noch ne Frage zu dem Lösen mit der 3ten
> Binomischen Formel.
>  
> Soweit ich weiß, kann amn doch nicht einfach [mm](a-b)^2[/mm] zu
> [mm]a^2-b^2[/mm] umformen. Die dritte binomische Formel lautet doch
> aber:
>  
> [mm]a^2-b^2[/mm] = (a-b)*(a+b)
>  
>
>
> Die Aufgabe lautete doch aber:
>  
> [mm]\bruch{(a-b)^{2}+c^{2}}{a-b-c}[/mm]

Also anfangs hast du geschrieben, dass die Formel so lautet:
[mm] \bruch{(a-b)^2-c^2}{a-b-c} [/mm] !?

Dann ist das a in deiner 3. binomischen Formel das hiesige (a-b) und das b in deiner 3. binomischen Formel ist das hiesige c. Damit ergibt sich dann direkt (ohne Zwischenschritt): [mm] (a-b)^2-c^2=((a-b)-c)((a-b)+c) [/mm]

Du kannst auch einfach von rechts nach links rechnen: [mm] ((a-b)-c)((a-b)+c)=(a-b)^2+(a-b)*c-c*(a-b)-c^2=(a-b)^2-c^2. [/mm] :-)

Nun alles klar?

Viele Grüße
Bastiane
[cap]

  

> Dann wurde gesagt dass man daraus folgendes macht:
>  
> [mm]\bruch{(a-b)^{2}+c^{2}}{a-b-c}=\bruch{((a-b)-c)((a-b)+c)}{(a-b-c)}[/mm]
>  
>
> Deshalb meine Frage wie kann man dann einfach diesen
> Schritt machen? Gibts hierfür noch einen Zwischenschritt?
>  
>
> Danke für eure Hilfe :)

Bezug
                        
Bezug
Terme | Regeln/Lösen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:04 Fr 15.09.2006
Autor: KnockDown

Hi Bastiane,

vielen Dank! Du kannst echt super erklären!!!

Ich hatte mich vertippt mit dem "+c" und "-c" klar hieß es "-c" sorry.

Ich wusste garnicht, dass ich das [mm] (a+b)^2 [/mm] als den einen Teil der 3ten Binomischen Formel sehen konnte und das [mm] -c^2 [/mm] als den anderen Teil!

Hieße das im Prinzip:

[mm] (a-b)^2 [/mm] - [mm] (c-d)^2 [/mm] = ((a-b)-(c-d))*((a+b)-(c+d)

Ginge das dann so?

Bezug
                                
Bezug
Terme | Regeln/Lösen: nein
Status: (Antwort) fertig Status 
Datum: 17:17 Fr 15.09.2006
Autor: Herby

Hi,

>  
> Ich wusste garnicht, dass ich das [mm](a+b)^2[/mm] als den einen
> Teil der 3ten Binomischen Formel sehen konnte und das [mm]-c^2[/mm]
> als den anderen Teil!
>  
> Hieße das im Prinzip:
>  
> [mm](a-b)^2[/mm] - [mm](c-d)^2[/mm] = ((a-b)-(c-d))*((a+b)-(c+d)
>  
> Ginge das dann so?

[notok]  die Formel lautet [mm] g²-h^2=(g-h)*(g+h) [/mm]

ich mach das jetzt mal bunt


[mm] \green{} [/mm]

[mm] \blue{g²}\red{-}\green{h²}=(\blue{g}\red{-}\green{h})*(\blue{g}\red{+}\green{h}) [/mm]

jetzt setze ich für

[mm] \blue{g}=\blue{(a-b)} [/mm]

[mm] \green{h}=\green{(c-d)} [/mm]

das gibt dann


[mm] \blue{(a-b)²}\red{-}\green{(c-d)²}=(\blue{(a-b)}\red{-}\green{(c-d)})*(\blue{(a-b)}\red{+}\green{(c-d)}) [/mm]


ich hoffe, du findest alles wieder :-)


Liebe Grüße
Herby


Bezug
                                        
Bezug
Terme | Regeln/Lösen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:18 Sa 16.09.2006
Autor: KnockDown

Danke! Jetzt hab ich es verstanden! Fand ich gut, dass du das farblich unterschieden hast, so konnte ich das besser sehen :)

Ich wünsch dir nen schönen Tag :)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]